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Abstract—This paper studies optimal control of multiple robot
systems with frictional contact. The robots have nonlinear dy-
namics, which may arise from the robot body dynamics, friction
between robot and environment, and friction between robot and
robot. Nonpenetration constraints between robots are imposed,
and the robots are assumed rigid. The problem is modelled
as a mathematical program with complementarity constraints
(MPCC). The MPCC model is solved using its elastic mode, which
is a well-behaved nonlinear programming problem. Preliminary
results with this approach are illustrated on example problems.
The main contributions of this paper are: (1) a novel optimal
control model that can deal with friction in the multiple robot
system; (2) application of a new mathematical programming
algorithm to solve the MPCC model effectively. The coordination
model has potential applications in robot systems with friction,
such as multi-finger manipulation, manipulation with ropes, and
multi-robot pushing coordination.

I. INTRODUCTION
Consider a scenario where a robot hand with multiple

fingers is above a table on which multiple coins are resting.
The goal is to control the robot fingers so they can manipulate
all the coins to specified target regions. Each finger may
contact multiple coins, and the coins may contact each other
during manipulation. Our long term goal is to automatically
generate optimal controls for such tasks involving multiple
objects, friction, and contact.
Coordinating multiple robots with simultaneous kinematic

and dynamics constraints has applications in a variety of tasks.
Examples include manipulation of multiple objects by multiple
fingers [16], manipulation of objects by multiple disk-shaped
robots [29] and even the manipulation of multiple objects by
robots using ropes [5]; a rope can be modelled as a chain of
rigid bodies that contact the objects and robots.
This paper addresses the following coordination problem:

Given a system of n robots,A1, . . . ,An, each robot is required
to move into a specified target region with a target velocity
from its specified initial position and initial velocity. The
optimal control problem is to generate the control inputs
(the applied external forces) and robot paths so that a cost
function, such as completion time or fuel consumption of
the robot system, is minimized. The robots motions must
satisfy dynamics constraints, including the friction constraints
and control constraints, and kinematics constraints, such as
collision avoidance or nonpenetration constraints.
We build the optimal control model using a mathematical

program with complementarity constraints (MPCC) formula-
tion. We then apply a newly developed mathematical program-

ming algorithm [1]to solve the MPCC by transforming it to
a well-behaved nonlinear programming problem known as its
elastic mode.
To illustrate the approach, we consider a simplified model

where the robots are circular disks with uniform density. We
also assume that the control, which is an external force, can be
applied at the center of mass of each robot. The translational
support friction force is opposite to the velocity of the disk
robot due to the symmetry of the bottom face of the disk
robot. The rotational support friction of each robot can be
modelled through a damper friction proportional to the size of
the robot. In our paper, only minimal time control is used to
illustrate our coordination strategy; however other objectives
can be optimized by just changing the model objective.
Friction is an especially important factor in multiple robot

control and manipulation. Contact friction can be described
using complementarity constraints [10], [30], [28], [3]. We
say that two vectors a and b are complementary ( a⊥b ) if
they satisfy the constraints

a ≥ 0 b ≥ 0 aT b = 0

or equivalently

a ≥ 0 b ≥ 0 aT b ≤ 0

The modelled contact-friction problems are called (linear or
nonlinear) complementarity problems and can be expressed in
the form.

F (u, v, w) = 0; u ≥ 0, v ≥ 0, uT v ≤ 0,

where u, v are vectors.
A mathematical program with complementarity constraints

(MPCC) formulation is an optimization problem in u, v, w that
has complementarity constraints:

minimize φ(u, v, w)
subject to F (u, v, w) = 0

u ≥ 0,
v ≥ 0,

uT v ≤ 0.
The MPCC is significantly more difficult than the comple-
mentarity problem, and solving MPCCs is an active area
of research. Recent algorithms to solve MPCCs potentially
provide new techniques to solve optimal control problems
for multiple robot systems. As such, MPCCs can extend the
class of solvable problems beyond the multibody dynamics
simulations currently solved by complementarity formulations.



II. RELATED WORK

Related work falls into the categories of dynamics for the
manipulation of multiple bodies, and motion planning and
coordination of multiple robots. For an overview of recent
research in robotic manipulation, including pushing, see [20].
Motion planning for multiple robots is a broad research area

(see [17] for an overview). Recent efforts have focused on
using probabilistic approaches [32], [24], [15], [18]. However,
none of these papers addresses the system optimization with
friction.
Dynamics problems with frictional contact have been ex-

tensively studied in the past couple of decades and comple-
mentarity constraints have been shown to be an effective way
to model the contact friction [4], [10], [11], [21], [22], [30],
[13], [3], [28], [27].
Dynamics problems with frictional contact have been done

previously by solving the corresponding complementarity
problems successfully[10], [30], [28], [3]; however due to
a dramatic increase in the level of difficulty of solving
an mathematical problem with complementarity constraints
(MPCC) as opposed to solving a complementarity problem,
the optimal control problem of a multiple robot system that
involves intermittent contact friction has rarely been addressed.
Mathematical programs with complementarity constraints

(MPCC), also known as mathematical programs with equi-
librium constraints are an important class of constrained
optimization problem arising from economics and engineering
[19]. In general, MPCCs are difficult to solve due to the
nonconvexity and the lack of constraint qualification [25];
however, recently it has been shown in [7], [6] and [1]
that nonlinear programming solvers can solve a large set
of MPCC successfully by its elastic mode, which lumps all
complementarity constraints into one nonlinear constraint.

III. PROBLEM FORMULATION
To describe our multiple robot system, we introduce the

notation in Table I, for the planar disk-robots Ai and Aj

(Figure 1).
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Fig. 1. two-robot system modes: noncontact and contact

TABLE I
NOTATION

Notation Description

(·)i property of robot Ai
R radius
q = (x, y, φ)T confi guration of robot
"vt = (ẋ, ẏ)T = (vx, vy)T translational velocity
vr = φ̇ rotational velocity of robot
"v = (ẋ, ẏ, φ̇)T = (vt, vr)T the velocity of robot
"N ij =

„
xj − xi

yj − yi

«
the vector from

center of Ai to center of Aj

"T ij =

„
−(yj − yi)

xj − xi

«
the tangential vector,

which is perpendicular to "N ij

"Rij
i = Ri "N ij

unit vector of the radius i
in the normal direction

"Rij
j = −Rj "N ij

unit vector of the radius j
in the normal direction

oij = || "N ij || distance between center of
Ai and center of Aj

ρij = oij − Ri − Rj distance between the two disks
cij
n the scaled magnitude

of the normal contact force
"f ij
n = cij

n
"N ij contact force from Ai to Aj ,

"fT = µcn "T ij tangential force

A. Dynamics between Robot and Environment

In this paper, the friction dynamics between each robot
and environment is modelled as friction between robot and a
horizontal floor. We decompose the translational friction and
rotational friction, and approximate them separately. We can
show that the translational friction force is opposite to the
velocity of the disk robot due to the symmetry of the bottom
face of the disk robot. The rotational friction of each robot can
be described through a damper friction proportional to the size
of the robot.

1) Translational friction
Denote the weight of the robot i by Gi, we have a
tangential friction force acting between the body and
the floor.

f i
T =






−µiGi (ẋi,ẏi)T

||(ẋi,ẏi)||2
if

∣∣∣∣(ẋi, ẏi)
∣∣∣∣

2
%= 0

(β̂i
1, β̂

i
2)T , if

∣∣∣∣(ẋi, ẏi)
∣∣∣∣

2
= 0.

here
∣∣∣
∣∣∣(β̂i

1, β̂
i
2)

∣∣∣
∣∣∣
2
≤ µ(i)G(i)

f i
T satisfies, among others, a circular constraint that
cannot be expressed by a finite number of linear con-
straints. Following the standard approach in the robotics
literature [23], where the circle is approximated by a
equilateral K-polygon P , where K is the number of
vertices, whose half-diagonals are the vectors #lifk . The
friction force between the robot and the floor can be
described in the dynamics case using the maximum



dissipation principle [28], [27]:

f i
T =

K∑

k=1

βif
k
#lifk

where
(
βif

k

)

k=1,2,...,K
solve

minimize (
K∑

k=1

βif
k
#lifk )T

(
ẋi, ẏi

)T

subject to:
∑
βif

k ≤ µiGi

βif
k ≥ 0 for k = 1, 2, . . . ,K

We use the Karush–Kuhn–Tucker optimality condition
to represent the solution of the above minimization
problem as a complementarity problem.

f i
T =

K∑

k=1

βif
k
#lifk , where

0 ≤ βif
k ⊥ #lif

T

k

(
ẋi, ẏi

)T + γif ≥ 0
for k = 1, 2, . . . ,K

0 ≤ µiGi −
K∑

k=1

βif
k ⊥ γif ≥ 0

where γif is the Lagrange multiplier of the optimality
system.

2) Rotational Friction
The distributed friction forces will also generate a fric-
tional torque which is the integral of all torques. Since
the density of the friction force is proportional to Mg, it
follows that the torque induced by the friction forces is
proportional to the weightMg. We approximately model
this friction torque as damping friction,

fr = −σdMgφ̇

B. Kinematics and Dynamics between Robot and Robot

These constraints require that two bodies do not penetrate
each other. For the case of two robots considered here, we
have that

ρij =
√

(xi − xj)2 + (yi − yj)2 − Ri − Rj ≥ 0

When there exists contact, penetration between bodies is
prevented by a normal force #f ij

n along the vector #N ij , with a
multiplier, cij

n ≥ 0. In other words, the normal force is cij
n
#N ij ,

although #N ij is not a unit vector. To completely quantify the
contact configuration, and the fact that cij

n = 0 when there is
no contact, we use the complementarity constraint

0 ≤ ρij ⊥ cij
n ≥ 0.

In the local coordinate frame of the robot, the tangential force
is #f ij

T = αij #T ij , where #T is the tangential vector and αij

is the scaled magnitude of the friction force. Following the

generalized coordinate notation in [14], the relative tangential
velocity between body 1 and body 2 are

vij
T = (Ψ(#T ij

1 ))T
(
ẋj , ẏj , φ̇j , ẋi, ẏi, φ̇i

)T

where Ψ(#a) =





#a
#Rij

i × #a
−#a
#Rij

j × #a



. Here the two-dimensional

cross product × is defined as: #r × #a = det([r, a]).
For the Coulomb friction model, the multiplier αij must

satisfy

αij =






µijcij
n vij

T < 0
t, t ∈ [−µijcij

n , µijcij
n ] vij

T = 0
−µijcij

n vij
T > 0

Here µij is the friction coefficient between bodies Ai and Aj .
The Coulomb friction model can be represented using

complementarity constraints using the maximum dissipation
principle [10], [30], [28], [3].

0 ≤ cij
n ⊥ ρij ≥ 0

0 ≤ αij
1 ⊥ Ψ(#T ij

1 )T vij + γij ≥ 0
0 ≤ αij

2 ⊥ Ψ(#T ij
2 )T vij + γij ≥ 0

0 ≤ µcij
n − αij

1 − αij
2 ⊥ γij ≥ 0

where ρij is the distance function between the two bodies,∣∣∣Ψ(#T ij
1 )T vij

∣∣∣ is the magnitude of the relative tangential veloc-
ity at the contact point, γij is the Lagrange multiplier, which
will be equal to

∣∣∣Ψ(#T ij
1 )T vij

∣∣∣, except for the degenerate cases.

C. The Dynamics Equations
We now write the dynamics equations for robot Aj .

mj v̇j
t =

K∑

k=1

βjf
k djf

k + F j

+
∑

i!=j

(αij
1 − αij

2 )#T ij +
∑

i!=j

cij
n
#N ij

Ij φ̇j =
∑

i!=j

#Rij
j × (−f ij

n − f ij
T ) − σdM

j φ̇j

=
∑

i!=j

−αij
1 Rjoij + αij

2 Rjoij − σdM
j φ̇j

In our approach, the external forces F i, i = 1 . . . n, represent
the control variables. We assume the force on each robot can
be applied individually, although the magnitude of the force
cannot exceed a specified value Fmax. The ∞-norm is used
in our implementation, i.e., |F i

x| ≤ Fmax, |F i
y| ≤ Fmax,

although other norms are easy to accommodate.

D. Mathematical Programs with Complementarity Constraints
(MPCC) Formulation for Multi-robot System with Approxi-
mated Friction
The full minimal time optimal control model for multiple

robot coordination is now obtained by combining the contents
in the previous subsections. Let z̃ = (q, v, γ,α,β, cn, Tf ), i.e.,



z̃ is a vector by stacking all variables and the unknown ter-
minal time Tf . The optimal control model can be abbreviated
as follows:

minimize Tf

subject to
M̃ ˙̃z = H̃(z̃)
F̃2(z̃) = 0
F̃1(z̃) ≤ 0
0 ≤ G̃1(z̃) ⊥ G̃2(z̃) ≥ 0

The dynamics, inequality, equality and complementarity con-
straints are described using appropriate vector functions.
We now use a semi-implicit finite difference discretization

method to solve the dynamics equations numerically [3]. The
discretized formulation then can be written as:

minimize Tf

subject to
Mz = H(z)z
F2(z) = 0 (1)
F1(z) ≤ 0
0 ≤ G1(z) ⊥ G2(z) ≥ 0

where z is a vector by stacking together all
z̃t at each time step t = 1, . . . , Ns. The vector functions
representing the dynamics, inequality, equality and
complementarity constraints are updated correspondingly. We
append the full discretized model in Appendix A.

IV. ALGORITHMS FOR SOLVING MPCCS
A. Elastic Mode for a Nonlinear Programming Problem
Given a nonlinear programming problem,

minimize φ(z)
subject to

W1(z) ≤ 0 W2(z) = 0 (2)

where z is the vector variable, φ(z) is the objective functions,
andW1,W2 are the constraint functions. The elastic mode for
a general nonlinear program via an L1 penalty function can
be presented as follows:

minimize φ(z) + ζeT ε

subject to
W1(z) ≤ ε1 − ε2 ≤ W2(z) ≤ ε3 (3)
ε = (ε1, ε2, ε3)T

where e = (1, 1, . . . , 1)T with appropriate dimension and ζ is
a penalty parameter.
Solving an elastic mode of a nonlinear programming

problem (3) instead of solving that nonlinear programming

problem itself (2) is a penalty approach; the method has
been proved successful for various nonlinear programming
problems [19] [9], especially if the nonlinear programming
problem (2) is not well-behaved, i.e., does not have constraint
qualification, which is a necessary condition for convergence
of many nonlinear programming algorithms.

B. Solving MPCC using its Elastic Mode
The MPCC formulation of the discretized nonsmooth coor-

dination problem (1) can be rewritten as:

minimize Tf

subject to
Mz = H(z)z
F2(z) = 0 (4)
F1(z) ≤ 0
G1(z) ≥ 0 G2(z) ≥ 0
GT

1 (z)G2(z) ≤ 0

The above problem is considerably more difficult to solve
than a typical nonlinear program. The difficulty originates in
the complementarity constraints, which implies the feasible
set does not have an interior. In other words, every feasible
solution of the above MPCC is on the boundary of the
solution set. This difficulty results in the fact that MPCC
does not satisfy a constraint qualification. In practical terms,
this implies that the linearization of the feasible set may
be infeasible arbitrarily close to the solution, which may
result in abnormal termination of most nonlinear programming
algorithms, a fact that has been amply demonstrated in practice
for many otherwise robust packages.
Nevertheless, it has been recently shown that certain ap-

proaches can handle this degeneracy quite well. Of particular
interest here is the elastic mode of the MPCC. Let

W1(z) =





F1(z) ≤ 0
G1(z) ≥ 0
G2(z) ≥ 0

GT
1 (z)G2(z) ≤ 0





W2(z) =
(

Mz = H(z)z
F2(z) = 0

)

then MPCC (1) is transformed into the nonlinear program-
ming form (2). Now we can solve the elastic mode of (2),
which is a well-behaved problem (3), using standard nonlinear
programming solvers.
It was shown in [1] that, under reasonable assumptions and

for a sufficiently large but finite penalty parameter, the MPCC
and its elastic mode (3) will have the same solution. The main
advantage of the elastic mode (3), however, is that it can be
shown that it has a nonempty interior of the feasible set and
the main barrier in the path of most solvers is now removed.
Now we give some practical notes about solving the models.

Finding an initial feasible solution is critical to the solver
performance; a feasible initial solution for our MPCC model
can be found by fixing a terminal time Tf that is large
enough for the solver to easily find a solution by solving a



complementarity problem. Almost every nonlinear algorithm
can be trapped in local minimum. We implement an inexact
algorithm to search for the global optimal solution by reducing
the objective. The inexact refers to the fact that the rate of the
objective reduction is inexact and adaptive.

V. EXPERIMENTAL RESULTS
Several experiments were conducted on multiple robot co-

ordination problems. The MPCC formulation and the inexact
reducing-objective algorithm are implemented in AMPL [8].
The resulting models are solved using SNOPT 6.1 [9], which
is a highly effective nonlinear programming solver that uses
a smooth augmented Lagrangian merit function and makes
explicit provision for infeasibility in the original problem
and the QP subproblems. All runs were made on a Linux
workstation with 2GB memory and four Intel(R) XEON(TM)
2.00GHz CPU. Table II defines the notation used in all tables
of results in this section.

TABLE II
DESCRIPTION OF HEADERS OF THE RESULT TABLES

Symbol Description
Nr Number of robots
Def Dimension of the external force(s)
Nt Number of time steps
K K-polygon approximation for circle
Nv Number of variables
Ntc Number of total constraints
Gs Global search solution
LB Lower bound of the optimal solution
Gt Global search time (seconds)

The robots have specified initial positions and velocities,
and each robot is required to move into a specified final
region. In the following data tables, the lower bound solutions
are obtained based on the bang-bang optimal solutions for
individual robots without considering the collision avoidance
or nonpenetration constraints. We only report the global search
time in the tables; however the program may find a good local
optimal solution using much less time. For some cases, even
the first local solution is very close to the final search solution.
We have two test example sets A and B. For examples in

set A, robot-floor friction exists, but robots are not permitted
to contact each other. For examples in set B, both robot-robot
contact friction and robot-floor friction exist.
1) Set A: Each pair of robots is required to have a minimal
safe distance ds > 0. In our experiments, ds = 0.01.
See Table III for the problems in set A and Table IV
for computational results for set A. The snapshots of
the coordination of six robots with collision avoidance
are shown in Figure 2. We include two examples, A1
and A2, of system with only one robot to show that the
computational results are very close to the theoretical
results; indeed the computational results are bang-bang
solutions. (A1 and A2 are the only two examples that
have theoretical solutions in our test examples. )

2) Set B: Robot-robot contact is allowed in the test exam-
ples. See Table V for the problems in set B and Table

TABLE III
TEST EXAMPLES IN SET A

Problem Nr Def Nt K Nv Ntc

A1 1 2 100 16 4385 2693
A2 1 1 100 16 4385 2693
A3 4 2 50 8 11248 8877
A4 6 2 50 4 20177 17220

TABLE IV
COMPUTATIONAL RESULTS OF EXAMPLES IN SET A

Problem Gs Gt (secs) LB
A1 9.03 5.8 8.94
A2 9.85 98.45 9.75
A3 9.60 20749.2 8.944
A4 9.71 12605.14 8.94

VI for computational results for set B. The animation of
three robots coordination with contact friction is shown
in Figure 3.

TABLE V
TEST EXAMPLES IN SET B

Problem Nr Def Nt K Nv Ntc

B1 2 2 100 16 10665 7080
B2 3 2 50 16 9392 6564
B3 3 2 50 16 9392 6564

TABLE VI
COMPUTATIONAL RESULTS OF EXAMPLES IN SET B

Problem Gs Gt LB
B1 9.78 3157.97 8.94
B2 9.48 4116.81 8.94
B3 9.39 4834.96 8.94

For all problems, SNOPT finished with an Optimal solu-
tion found message. This shows that a Karush-Kuhn-Tucker
stationary feasible point has been found for all cases by using
the elastic mode, as predicted in [1]. Of course, we have no
way of guaranteeing that this point is also a global minimum
of the problem.
However, from Tables IV and VI we note that the objective

function gap between the point that was found by the solver
and the lower bound is always smaller than 1 and is sometimes
as small as .07. This shows that we have obtained a high
quality solution point. It is true that Tables IV and VI
also show that the final point was not cheap to compute.
However, we note that in our experience the results are
obtained much faster than using disjunctive programming or
integer programming to compute a local solution point. Indeed,
using disjunctive programming to replace the complementarity
constraints will result in having to deal with thousands of
binary variables for problem A4, which seems an impossible
task for a computer like the one we used, and quite possibly
for any current computing architecture.

VI. APPLICABILITY OF MPCC
The MPCC formulation is potentially applicable to a

broader class of problems, as illustrated below.
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Fig. 2. Six robot coordination that has robot-floor friction and a robot-robot minimal safe distance d s = 0.01.
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Fig. 3. Three robot coordination that has both robot-robot friction and robot-floor friction: note the change in orientation arising from robot-robot contact

1) Motion planning problems in general have static and
moving obstacles. Computing the distance between the
each obstacle and robot involves solving a minimization
problem, which in general can be written as comple-
mentarity constraints.

2) The high gear ratios of industrial manipulator actuators
cause significant reductions of the effective joint torques
due to friction. In [26], [12], the manipulator drive
friction torque τq is given by

τq(β, τ) =
{

sign(β)κ0 if β %= 0;
sign(τ)min(κ0, |τ |) if β = 0;

where β is the rotor velocity, τ is the rotor torque, κ0

models the friction. sign(β), sign(τ) and min(κ0, |τ |)
can be described using complementarity constraints [31].

VII. CONCLUSIONS
We built a novel optimal control model for coordinating

multiple robots with friction based on mathematical program
with complementarity constraints (MPCC). A new mathemat-
ical programming algorithm is applied to solve the MPCC
problem by solving the elastic mode of that MPCC problem.
Numerous dynamics simulations of multibody systems with
contact friction have been studied previously in robotics and
mechanics. However, to the best of our knowledge, there has

been no previous reported work on optimal control of multiple
robot systems involving contact friction.

MPCC is a convenient way to represent the optimal con-
trol model for robot systems with friction. Our preliminary
results show that solving MPCC is computationally challeng-
ing, though it still compares favorably to most alternatives,
in particular disjunctive or integer programming approaches.
Therefore we believe that an important future direction is
improving the efficiency of algorithms to solve MPCCs.

The approach presented here can be immediately extended,
in principle, to problems that have robots of other smooth
shapes, for example elliptical. For such shapes, the depth
of penetration function is smooth [2]. In addition, the depth
of penetration can be represented by adding a few other
constraints that involve the shape of the bodies. Extending
the model to 3D is a natural next step, although we expect
more computational challenges. Studying simpler problems,
for example, where control can only be applied at the initial
state, may give us theoretical guarantees of faster convergence.
Additionally, it will be interesting to look at optimal control
problems for hybrid systems that can be modelled as comple-
mentarity systems.
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[32] P. Švestka and M. H. Overmars. Coordinated motion planning for multi-
ple car-like robots using probabilistic roadmaps. In IEEE International
Conference on Robotics and Automation, pages 1631–1636, Nagoya,
Japan, May 1995.



Appendix A: The Discretized Optimal Control Model for Multiple
Robot Coordination using MPCC

min Tf

subject to : (at each time step t)
dynamics constraints of disk-robot Ai and floor

0 ≤ βif,t
k ⊥ (dif

k )T · vif,t+1 + γif,t ≥ 0 k = 1 . . . K

0 ≤ (µgM i −
KX

k=1

βif,t
k ) ⊥ γif,t ≥ 0

nonpenetration between Ai and Aj :
ρij,t =

p
(xj,t − xi,t)2 + (yj,t − yi,t)2 − Ri − Rj ≥ 0

dynamics related to Ai and Aj

$N ij,t =

„
xj,t − xi,t

yj,t − yi,t

«

oij,t =
p

(xj,t − xi,t)2 + (yj,t − yi,t)2

ρij,t = oij,t − Ri − Rj

0 ≤ cij,t
n ⊥ ρij,t(q) ≥ 0

Ψ($T ij
1 )vij,t+1 = −(yj,t − yi,t)vj,t+1

x + (xj,t − xi,t)vj,t+1
y

− Rjoij,tvj
φ + (yj,t − yi,t)vi,t+1

x

− (xj,t − xi,t)vi,t+1
y − Rioij,tvi

φ

Ψ($T ij
2 )vij,t+1 = (yj,t − yi,t)vj,t+1

x − (xj,t − xi,t)vj,t+1
y

+ Rjoij,tvj
φ − (yj,t − yi,t)vi,t+1

x

+ (xj,t − xi,t)vi,t+1
y + Rioij,tvi

φ

0 ≤ αij,t
1 ⊥ Ψ($T ij

1 )T · vij + γij,t ≥ 0

0 ≤ αij,t
2 ⊥ Ψ($T ij

2 )T · vij + γij,t ≥ 0

0 ≤ µcij,t
n − αij

1 − αij,t
2 ⊥ γij,t ≥ 0

time stepping

h =
Tf

Ns

the Kinematics Equations
„

xj,t+1 − xj,t

yj,t+1 − yj,t

«
= vj,t+1h

the Dynamics Equations

M j(vj,t+1
t − vj,t

t )
h

=
KX

k=1

βjf,t
k djf,t

k + F j,t

+
X

i!=j

(αij,t
1 − αij,t

2 )$T ij,t +
X

i!=j

cij,t
n

$N ij,t

Ij (vj,t+1
r − vj,t

r )
h

=
X

i!=j

$Rij,t
j × (−f ij,t

n − f ij,t
T ) − σdIj φ̇j,t

=
X

i!=j

−αij,t
1 Rjoij,t + αij,t

2 Rjoij,t − σdM jvj,t

external force constraints
|F i,t

x | ≤ fmax |F i,t
y | ≤ F i

max

the given initial values:
qi,0 = qi

0 vi,0 = vi
0

the box constrained fi nal values:
qi

low,end ≤ qi(Tf ) ≤ qi
upp,end

vi
low,end ≤ vi(Tf ) ≤ vi

upp,end
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